Anisotropy of Crumbs and aPKC Drives Myosin Cable Assembly during Tube Formation

نویسنده

  • Katja Röper
چکیده

The formation of tubular structures from epithelial sheets is a key process of organ formation in all animals, but the cytoskeletal rearrangements that cause the cell shape changes that drive tubulogenesis are not well understood. Using live imaging and super-resolution microscopy to analyze the tubulogenesis of the Drosophila salivary glands, I find that an anisotropic plasma membrane distribution of the protein Crumbs, mediated by its large extracellular domain, determines the subcellular localization of a supracellular actomyosin cable in the cells at the placode border, with myosin II accumulating at edges where Crumbs is lowest. Laser ablation shows that the cable is under increased tension, implying an active involvement in the invagination process. Crumbs anisotropy leads to anisotropic distribution of aPKC, which in turn can negatively regulate Rok, thus preventing the formation of a cable where Crumbs and aPKC are localized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent polarization mechanisms during vertebrate epithelial development mediated by the Crumbs complex protein Nagie oko.

The zebrafish MAGUK protein Nagie oko is a member of the evolutionarily conserved Crumbs protein complex and functions as a scaffolding protein involved in the stabilization of multi-protein assemblies at the tight junction. During zebrafish embryogenesis, mutations in nagie oko cause defects in both epithelial polarity and cardiac morphogenesis. We used deletion constructs of Nagie oko in func...

متن کامل

Domain-specific functions of Stardust in Drosophila embryonic development

In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events....

متن کامل

aPKC Phosphorylation of Bazooka Defines the Apical/Lateral Border in Drosophila Epithelial Cells

Bazooka (PAR-3), PAR-6, and aPKC form a complex that plays a key role in the polarization of many cell types. In epithelial cells, however, Bazooka localizes below PAR-6 and aPKC at the apical/lateral junction. Here, we show that Baz is excluded from the apical aPKC domain in epithelia by aPKC phosphorylation, which disrupts the Baz/aPKC interaction. Removal of Baz from the complex is epithelia...

متن کامل

Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation

Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical-lateral border. Cdc42 and its effector complex Par6-atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from j...

متن کامل

aPKC Phosphorylates Miranda to Polarize Fate Determinants during Neuroblast Asymmetric Cell Division

BACKGROUND Asymmetric cell divisions generate daughter cells with distinct fates by polarizing fate determinants into separate cortical domains. Atypical protein kinase C (aPKC) is an evolutionarily conserved regulator of cell polarity. In Drosophila neuroblasts, apically restricted aPKC is required for segregation of neuronal differentiation factors such as Numb and Miranda to the basal cortic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012